Frozen food
Freezing food preserves it from the time it is prepared to the time it is eaten. Since early times, farmers, fishermen, and trappers have preserved their game and produce in unheated buildings during the winter season.[1] Freezing food slows down decomposition by turning residual moisture into ice, inhibiting the growth of most bacterial species. In the food commodity industry, the process is called IQF or Individually Quick Frozen.
Preservatives
Frozen products do not require any added preservatives because microorganisms do not grow when the temperature of the food is below -9.5°C, which is sufficient on its own in preventing food spoilage. Long-term preservation of food may call for food storage at even lower temperatures. Carboxymethylcellulose (CMC), a tasteless and odorless stabilizer, is typically added to frozen food because it does not adulterate the quality of the product. [2]
History
Beginning in 1929, Clarence Birdseye offered his quick-frozen foods to the public. Birdseye got the idea during fur-trapping expeditions to Labrador in 1912 and 1916, where he saw the natives use freezing to preserve foods.[3] Modern attempts at refrigeration began in the early 20th century in the meat packing industry. More advanced attempts include food frozen for Eleanor Roosevelt on her trip to Russia. Other experiments, involving orange juice, ice cream and vegetables were conducted by the military near the end of World War II.
Packaging
Frozen food packaging must maintain its integrity throughout machine filling, sealing, freezing, storage, transportation, thawing, and often cooking.[4] As many frozen foods are cooked in a microwave oven, manufacturers have developed packaging that can go straight from freezer to the microwave.
In 1974, the first differential heating container (DHC) was sold to the public. A DHC is a sleeve of metal designed to allow frozen foods to receive the correct amount of heat. Various sized apertures were positioned around the sleeve. The consumer would put the frozen dinner into the sleeve according to what needed the most heat. This ensured proper cooking.[5]
Today there are multiple options for packaging frozen foods. Boxes, cartons, bags, pouches, heat-in-bag pouches, lidded trays and pans, crystallized PET trays, and composite and plastic cans.[6]
Scientists are continually researching new aspects of frozen food packaging. Active packaging offers a host of new technologies that can actively sense and then neutralize the presence of bacteria or other harmful species. Active packaging can extend shelf-life, maintain product safety, and help preserve the food over a longer period of time. Several functions of active packaging are being researched:
Effects on nutrients
Vitamin content of frozen foods
- Vitamin C: Usually lost in a higher concentration than any other vitamin.[8] A study was performed on peas to determine the cause of vitamin C loss. A vitamin loss of ten percent occurred during the blanching phase with the rest of the loss occurring during the cooling and washing stages.[9] The vitamin loss was not actually accredited to the freezing process. Another experiment was performed involving peas and lima beans. Frozen and canned vegetables were both used in the experiment. The frozen vegetable were stored at −10 °F (−23 °C) and the canned vegetables were stored at room temperature (75 °F). After 0, 3, 6, and 12 months of storage, the vegetables were analyzed with and without cooking. O'Hara, the scientist performing the experiment said, "From the view point of the vitamin content of the two vegetables when they were ready for the plate of the consumer, there did not appear to be any marked advantages attributable to method of preservation, frozen storage, processed in a tin, or processed in glass."[10]
- Vitamin B1 (Thiamin): A vitamin loss of 25 percent is normal. Thiamin is easily soluble in water and is destroyed by heat.[11]
- Vitamin B2 (Riboflavin): Not much research has been done to see how much freezing affects Riboflavin levels. Studies that have been performed are inconclusive; one study found an 18 percent vitamin loss in green vegetables, while another determined a 4 percent loss.[12] It is commonly accepted that the loss of Riboflavin has to do with the preparation for freezing rather than the actual freezing process itself.
- Vitamin A (Carotene): There is little loss of carotene during preparation for freezing and freezing of most vegetables. Much of the vitamin loss is incurred during the extended storage period.[13]
Efficiency
Freezing is an effective form of food preservation because the pathogens that cause food spoilage are killed or do not grow very rapidly at reduced temperatures. The process is less effective in food preservation than are thermal techniques, such as boiling, because pathogens are more likely to be able to survive cold temperatures rather than hot temperatures.[14] One of the problems surrounding the use of freezing as a method of food preservation is the danger that pathogens deactivated (but not killed) by the process will once again become active when the frozen food thaws.
Foods may be preserved for several months by freezing. Long-term frozen storage requires a constant temperature of -18 °C (0 °F) or less, a temperature which many non-industrial freezers cannot achieve.[15]
Reaction
According to a study, an American consumes on average 71 frozen foods a year, most of which are pre-cooked frozen meals.[16] Many food critics host shows dedicated to the tasting and reviewing of frozen foods, the web show Freezerburns being one of the more notable ones.[17]
Weblinks
Media related to [//commons.wikimedia.org/wiki/Category:Frozen_food Frozen food] at Wikimedia Commons
See also
Notes
- ^ Tressler, Evers. The Freezing Preservation of Foods Pg 213-217
- ^ Arsdel, Michael, Robert. Quality and Stability of Frozen Foods: TIme-Temperature Tolerance and its Significance. Pg. 67-69
- ^ "Frozen Foods". Massachusetts Institute of Technology. http://web.mit.edu/invent/iow/birdseye.html.
- ^ Decareau, Robert. Microwave Foods: New Product Development. Pg 45-48
- ^ Whelan, Stare. Panic in the Pantry: Facts and Fallacies About the Food You Buy
- ^ Russell, Gould. Food Preservatves. Pg 314
- ^ Sun, Da-Wen. Handbook of Frozen Food Processing and Packaging. Pg 786-792
- ^ Tressler, Evers. The Freezing Preservation of Foods. Pg 620-624
- ^ Tressler, Evers. The Freezing Preservation of Foods. Pg 961-964
- ^ Tressler, Evers. The Freezing Preservation of Foods. Pg 627
- ^ Gould, Grahame. New Methods of Food Preservation. Pg 237-239
- ^ Tressler, Evers. Pg. 973-976
- ^ Tressler, Evers. The Freezing Preservation of Foods. Pg. 976-978
- ^ Mathlouthi, M. Food Packaging and Preservation. Pg 112-115
- ^ Tressler, Evers, Evers. Into the Freezer - and Out. Pg 56-82
- ^ Harris, J. Michael and Rimma Shipstova, Consumer Demand for Convenience Foods: Demographics and Expenditures, AgEcon, p. 26, http://ageconsearch.umn.edu/bitstream/46585/2/38030026.pdf, retrieved 16 July 2011
- ^ Stock, Sue (18 April 2010). "Web viewers warm up to frozen food show". News & Observer. http://www.newsobserver.com/2010/04/18/440825/web-viewers-warm-up-to-frozen.html?storylink=misearch. Retrieved 10 July 2011.
References
- Arsdel, Wallace, B. Van, Michael, J Copley, and Robert, L. Olson. Quality and Stability of Frozen Foods: TIme-Temperature Tolerance and its Significance. New York, NY: John Wiley & Sons,INC, 1968.
- "Clarence Birdseye." Encyclopedia of World Biography. Vol. 19. 2nd ed. Detroit: Gale, 2004. 25-27. Gale Virtual Reference Library. Gale. Brigham Young University - Utah. Nov. 3 2009 <http://go.galegroup.com/ps/start.do?p=GVRL&u=byu_main>
- Copson, David. Microwave Heating. 2nd ed.. Westport, CT: The AVI Publishing Company, INC., 1975.
- Decareau, Robert. Microwave Foods: New Product Development. Trumbull, CT: Food & Nutrition Press, INC., 1992.
- Gould, Grahame. New Methods of Food Preservation. New York, NY: Chapman & Hall, 2000.
- Mathlouthi, Mohamed. Food Packaging and Preservation. New York, NY: Chapman & Hall, 1994.*^Robinson, Richard. Microbiology of Frozen Foods. New York, NY: Elsevier Applied Science Publishers LTD, 1985.
- Russell, Nicholas J., and Grahame W. Gould. Food Preservatives. 2nd ed. New York, NY: Kluwer Academic/Plenum Publishers, New York, 2003.
- Sun, Da-Wen. Handbook of Frozen Food Processing and Packaging. Boca Raton, Fl: Taylor & Francis Group, LLC, 2006.
- Tressler, Donald K., Clifford F. Evers, and Barbara, Hutchings Evers. Into the Freezer - and Out. 2nd ed. New York, NY: The AVI Publishing Company, INC., 1953.
- Tressler, Donald K., and Clifford F. Evers. The Freezing Preservation of Foods. 3rd ed. 1st volume. Westport, CT: The AVI Publishing Company, INC., 1957.
- Whelan, Elizabeth M., and Fredrick J. Stare. Panic in the Pantry: Facts and Fallacies About the Food You Buy. Buffalo, NY: Prometheus Books, 1998.